

LOFAR high-band observations of the microquasars SS433 and GRS 1915+105

Jess Broderick (University of Oxford, University of Southampton)

Rob Fender, James Miller-Jones, Adam Stewart, Ben Stappers, Ralph Wijers and the LOFAR Transients Key Science Project

SS433 / W50

* Famous microquasar at D = 5.5 kpc.

- * Mildly-relativistic (0.26*c*), precessing jets (period 162.5 days).
- * Evidence that jets have influenced W50 morphology.

* VLA 1465 MHz (Dubner et al. 1998)

* resolution 56 arcsec x 54 arcsec
* rms 0.5 mJy/beam

* VLA 74 MHz (Miller-Jones et al. 2007)
* resolution 108 arcsec x 93 arcsec
* rms 192 mJy/beam

* Cycle 0 and 1 observations (LC0_039+LC1_023):

- 1 x 4h HBA, 1 x 3.5h LBA at start of Cycle 0 (16 bit mode)
- 1 x 4h HBA at start of Cycle 1 (8 bit mode)
- 12 x 30 min HBA (8 bit), 12 x 30 min LBA (16 bit) to monitor
 SS433 ~monthly
- Calibrators 3C380 (HBA) and 3C295 (LBA).
- No demixing of target field needed in high band.

- Data pre-processed by Observatory; calibration and imaging carried out on Southampton cluster.
- Reduction strategy similar to MSSS; imaging carried out with AWImager.

* HBA_DUAL map from Cycle 0

- * 4h run on 2013 Feb. 18
- * 48 MHz bandwidth; 115-163 MHz
- * Observations of **3C380 every** ~15 min
- **Baselines** $< 4k\lambda$ * Baselines (~8 km) fo ""* Robust=0 (~8 km) for imaging
- - * Resolution 82 arcsec x 58 arcsec (beam PA 9 deg)
- * Noise ~6-7 mJy/beam
- * SS433 peak flux 2.1 Jy/beam
- * SS433 integrated flux 2.4 Jy

Broderick et al., in prep.

Broderick et al., in prep.

* SS433 integrated flux 2.4 Jy

* HBA_DUAL map from Cycle 0

- * 4h run on 2013 Feb. 18
- * 48 MHz bandwidth; 115-163 MHz
- * Observations of **3C380 every** ~15 min
- **Baselines** $< 4k\lambda$ * Baselines (~8 km) fo ""* Robust=0 (~8 km) for imaging
- - * Resolution 82 arcsec x 58 arcsec (beam PA 9 deg)
- * Noise ~6-7 mJy/beam
- * SS433 peak flux 2.1 Jy/beam
- * SS433 integrated flux 2.4 Jy

Broderick et al., in prep.

LOFAR HBA

* Resolution 82 arcsec x 58 arcsec

VLA 20 cm

* Resolution56 arcsec x54 arcsec

'Chimney' also seen at 1465 MHz (Dubner et al. 1998) * **Extension** ~6 arcmin, width ~7 arcmin in base * * Two-point spectral index (145-1465 MHz) ~ -0.5

SS433/W50 HBA

SS433/W50 LOFAR HBA

Right Ascension (J2000)

Long-recognized incompleteness of Galactic SNR catalogues could be rectified with low-frequency studies (e.g. Brogan et al. 2004).

Miller-Jones et al. 2007

HBA flux densities:

Central shell 152 ± 30 Jy (predicted 150 Jy)Eastern wing 71 ± 14 JyWestern wing 37 ± 7 Jy (predicted 40 Jy)Entire nebula 260 ± 50 Jy (predicted 240 Jy)

Minimum energy ~10⁴⁸ erg: ~0.1–1 per cent of the kinetic energy injected into surroundings by the jets.

 $S\propto\nu^{\alpha}$

Right Ascension (J2000)

 * Two-point spectral index map between 145 and 1465 MHz.
 * Influence of fluctuating background levels still needs to be quantified properly.

* Preliminary 43-74 MHz averaged map from Cycle 0 (LBA_OUTER)

* 3.5h run 2013 February 13

* Simultaneous observations of target and calibrator

* Baselines < 12 km for imaging

* Robust=0

* Resolution 70 arcsec x 61 arcsec (PA 35 deg)

* Noise 35 mJy/beam

* SS433 peak flux 0.7 Jy/beam

Right Ascension (J2000) Very preliminary evidence for spectral turnover in the LBA for SS433 and W50.

* Spectral index for SS433 across LOFAR high band is far too steep (~ -2).
 * Similar problem seen for other sources in field, and also in MSSS mosaic containing SS433. But average flux densities across band look fine....

Broderick et al., in prep.

HBA monitoring Feb 2013 - Mar 2014

* LOFAR calibration uncertainty ~10%.

* Resolution 150 MHz: 140 arcsec x 100 arcsec (baselines 0.1-3kλ)
 * Indications of low-frequency variability → illustration of how LOFAR can become a key trigger for other facilities.

Broderick et al., in prep.

HBA monitoring Feb 2013 - Mar 2014

* LOFAR calibration uncertainty ~10%.

* Resolution 150 MHz: 140 arcsec x 100 arcsec (baselines 0.1-3kλ)
 * Indications of low-frequency variability → illustration of how LOFAR can become a key trigger for other facilities.

GRS 1915+105

- * Canonical microquasar system at D = 11 kpc.
- * Jets with velocities > 0.9*c* (Mirabel & Rodriguez 1994, Fender et al. 1999).
- * 244 MHz flux density reaches 750 mJy (Ishwara-Chandra et al. 2005).
- * Existence of jet-inflated lobes around GRS 1915+105 has previously been suggested, although the evidence to date is inconclusive (e.g. Chaty et al. 2001).

LOFAR observations:

- * 10.5 hours over 4 runs in
 - 2013 November (LC1_023+DDT1_001).
- * 108 'spare' sub-bands spanning 140-160 MHz.
- * Similar reduction strategy as for SS433/W50.

Miller-Jones et al. 2007

92 cm WSRT (left) and 2 m LFFE (right)

* HBA_DUAL_INNER map from Cycle 1

- * 10.5h over 4 runs in 2013 November
- * 20 MHz bandwidth; 140-160 MHz
- * Observations of 3C380 every ~20 min
- * Baselines 0.1-6kλ (~0.2-12 km) for imaging
- * Robust=0

* Resolution 60 arcsec x 40 arcsec (beam PA 14 deg)

* Noise ~10 mJy/beam

* GRS 1915 flux ~30 mJy

GRS1915+105 HBA 2013 November +11°20 +11°10'(J2000) Ø.°® 0 Я 11 20 +11°00′ Declination IRAS 19124+1106 10 +10°50′ DECLINATION (B1950) SNR 45.7-0 00 G45.46+0.06 +10°40 GRS 1915+105 10 50 40 +10°30 IRAS 19132+1035 Rodriguez & Mirabel 1998; 19^h17^m 16^m 15^{m} VLA 20 cm Right Ascension (J2000) 19 15 00 14 30 13 30 12 30 00 00 RIGHT ASCENSION (B1950)

* Measurement of the low-frequency morphology and spectra of the extended emission would help resolve debate. Should they be associated with the jets, could determine time-averaged jet power.

Summary and future work

- * High-quality SS433/W50 data paper in preparation.
- * Variability detected for SS433 in high band.
- * SS433 LBA observations to be fully reduced.
- * Spectral index map between HBA and LBA.
- * International station data for one HBA monitoring run.
- * Multi-scale, wide-band deconvolution in updated AWImager.
- * Higher-resolution HBA maps.
- * GRS 1915+105 detection; jet-inflated lobes?
- * Cycle 2 request: deep HBA observations of GRS 1915+105 and Cygnus X-1/X-3.

Thanks to Science Support and all of the LOFAR commissioners!